The Dry Eye Zone

Rebecca's Blog


Study: Custom meibographer for use in developing countries?


I love the idea of increasing access to important technologies like this!

BMC Ophthalmol. 2018 Aug 16;18(1):201. doi: 10.1186/s12886-018-0869-0.
Assessment of meibomian glands using a custom-made meibographer in dry eye patients in Ghana.
Osae EA, Ablorddepey RK, Horstmann J, Kumah DB, Steven P.

Meibomian Gland Dysfunction (MGD) is a leading cause of evaporative Dry Eye Disease (DED). This makes non-invasive meibography an important procedure in the clinical evaluation of DED patients. Our purpose was to conduct a lead-off investigation focused on the practicality of performing meibography in a developing country, with limited access to complex ophthalmic imaging systems, using a custom meibographer, as a step to future comparative studies on meibomian glands and DED in Africa.

Meibomian glands(MG) in 76 upper eyelids (UL) and 49 lower eyelids (LL) in 1 eye each of 125 patients randomly selected from a patient population presenting with subjective DED symptoms at a clinic were photographed using a custom meibographer. Single frames were captured, and the MG area determined by intensity threshold segmentation and area calculation using Image J software. MG loss (MGL) was quantified by outlining its area and expressing it as a percentage of the total MG per Pult's grading scheme. Dry eye measures included Tear Film Break Up - Time (TUBT), Schirmer's test and Ocular Surface Staining (OSS). Symptoms were evaluated using the SPEED II questionnaire. Correlations between MGL and age, ocular signs and symptoms were analyzed by Pearson's. Differences between comparable groups were analyzed by Mann - Whitney test; p < 0.05 was considered significant.

Overall mean MGL was 32.10% ± 25.0% (26.25% ± 22.40% for UL and 40.33% ± 26.70% for LL). MGL correlated significantly with age [r = 0.91, p = 0.001], SPEED scores [r = 0.90, p = 0.001], OSS [r = 0.75, p = 0.001] and TBUT [r = - 0.81, p = 0.001]. MGL scores were significantly higher in the UL than LL [U = 1293.5 p = 0.004].

This study for the first time presents data on the status of Meibomian glands in Africa. It furthermore suggests that it is feasible to examine Meibomian glands using a custom meibographer in developing countries with limited access to complex imaging systems. It also demonstrates the benefit and cost-effectiveness of a simple device by the observed significant relations between meibomian gland loss and DED in these patients.